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1.
On an Iterative Process in the Solution of the Regular N-Body Problem
INTRODUCTION

This paper applies to the n-body problem of the general
iterative process generated in ref [6] for the s olution of any system
of differential equations with analytic properties. In a quite
specialized form, and in a somewhat different context, a comparable
method is given in ref fu] for the solution of the problem.

If the solution of a system of differential equations is
identified with the invariant of a complete metric space under a con-
traction mapping of the space into itself,[3 pp. h34ﬂg then the
process becomes a method of approximating (successively) to the solu-
tion. Tﬁe first part of the paper thus evolves this formal methodology
in the solution of the problem. The iterative solution is expressed
in two forms. The first statement of the iterative solution is re-
cursive and the second is linear and irreducible.

The latter gives the iterative solution as a function of an
arbitrary function which is the initial element of the iterative
sequence., Three items are involved in the linear iterative formulation:
an arbitrary function, coefficients and an error function. For the
linear expression to be well defined, the arbitrary function must be
specified, the coefficients must be given in terms of the initial con-
ditions of the motion of the n-bodies and the error function must be
characterized. These problems are resolved in the first part.

The analytical phases of the problem is discussed in the
second part, Here the basic question of the connection between the ele-
ments of the iterative sequence and the actual solution is answered. The
matter of the region of convergence of the series representing the actual
solutioﬁ, is formulated in two forms and the rate of convergence

of the elements of the iterative
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sequence relative to (what is called) the partial sum sequence is given
a measure. In the final part, a summary of the paper with a very brief

directive in numerical determination, is given.

I. THE ITERATIVE METHODOLOGY

This part deals with the formal iterative process in the
solution of the n-body problem. However, in its generation a serial
a serial aspect will be involved, so that thé process may be deécribed
as a pseudo iterative mode in the determination of a gequence of suc-
cessive approximations to the solution. In turn this sequence will be
transformed into a linear expression where any element will depend on
the initial arbitrary element of the sequence.

Since this part of the paper depends, in a measure, on the
two references fuj, [6] , we Wwill repeat a few items, for the sake of
completeness, of the methodology contained there. The analytical justi-

fication of the process will be considered in the part that follows.

Related Systems of Differential Equations: Three related systems [6]

of differential equations are generated in this section. The initial

system of the n-body problem is given by the equations of motion:

.-; - o 4..'.4 ~ PN ' .
(1.1) X A = }ZHJ'S' I—X 4 5 HJ‘ G'f”’)}s -»O,J = lhdymm o ;ﬁ:bkﬂ?jﬁ#f

+

(1.2) X*“ : Position vector of the i th point mass, M-

(1.3) x;4‘ZScalar components of XL relative to a Cartisian inertial
~ coordinate system.
(1.4) 2Z03'=4x¥'xz ! The relative position vector from the i to the j
'particle.

. -4— .A .
(1.5) X“#%=x? ‘X(”".'Scalo.r components of the relative vector X*“¥



kd

3e , .
' 3% 0)*- £, k)?
(1.6) R“? = lxb}l ‘Z@:“) = ;(XJ -x9" The square of the magnitude
of the relative vector zt;i.
P ‘;- -l
(1.7) S"‘(R }) * . A scalar quantity.

To the original system (l4l) two other systems are added:

(108) EH "J’X“’Jk j) A=ly2, 3, ~~--

(1.9) Z H qi

The second system (1.8) is derived from (1.1) by the addition of sub-
scripts. These subscripts originate from the partial sums formed from

the serial solution

. ==
(1.16) x<wot) = *2__,,54 z*

of the system (1.1), namely
o+b

— A.-L
(1.10), XJ‘ *Z_f =h2,--- 5 b a fixed integer >0

The third system (1.9) is derived, in form, from (1.8), and may be
called the iterative system of (1.1). It is manifest that the three
systems are distinct at least formally. The first system consists of
3n equatigps, whereas the other two systems are given by 320uxd,d=b2z---
expressions,

To give fully specialized meaning to (1.8), (1.9) we define
the functions & and X of (1.1) and thus are able to express these

same symbols with subscripts, by partial sums, namely

s _ “ £ g - aog“-? A
(1.11) (o) R7°(A)= PARE (b) §4) 4eZ=o“ ¢

#=0 )
) X;;',L(U = Z?:}l’t* , A;A 514 ;oé

Let the partial sums of (1.10) and (1.11) define the symbollﬁk

as given by (1.10), and the s ymbols RJ” S;,.z;\, by the expressions



Lo A+b

dtb -
. 3‘ £ ¥ — iR
(1.12) (a) REAZ:, % , (b i EG" 4
(c) X&;4 ZOQ"? , A=613H"" 5, b > 0 an assigned
integer,

The symbol X though given by (1.10), is not well defined. We obviate
this lack by connectlng X and X by the specification that
(1.13) xzd- L)+ ELH) ) dmua -

J

On first glance it would appear that X is still ill-defined since
the symbol ¢ has no meaning atteched to it., However, it will be
shown in the sequel (as it has beens hown in[ L] (in a different con-

text) that

v _—,L .
(1.14) {‘;”’; ELW= o for any <, 4 and some specified 1t region.

The Non-recurgive Form of the Iterative Solution: To generate a non-

AL
recursive form of the iterative solution X: we first unfold its
recursive form [ ;] . To do so substitute the right members of (1.8)

and (1.9) in expression (1.13). This leads to the statement,

¥ A':. < ,4.4 — b
(2.1) ?ZHJ%L}XO‘;‘& = ;HJ-S;_';ZQ(:;, + éoL

In view of definition (l.u) equation (2.1) becomes

S g xi) = 3 Hy G- xit)+ B

By solving this equation for ;(‘4‘ we generate the recursive form

X:Z{: H::, xc( C.“'A é’l—'l A=12,3

(2.2) Ae wi " TgE PO

where the symbols H;C: €’ are defined as
~ 22
~ /'4 « £ <f J{ .(..4 <
2.3 AP= THST, = ZasA- ST, et S
LN
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The recursive sequence of successive approximations

A A s
(2’14') (XC’ > Xl > XJ. )"“)

to the actual solution x"‘j” of (1.1) is generated by (2.2). This order-
ed set of solutions is formally valid, provided the coefficients
can be expressed in terms of known or computable functions for any ok
and where E:f is well defined. UFor the latter entity a measure
will be derived,in the sequel, through the realization that the actual
solution and the sequence of iterative solutions xi(‘ are embedded in
a complete metric space for which a contraction mapping is permissable
such that the invariant of this mapped space into itself is the solution
of (1.1) and which is the limit of the sequence of functions (2.lL).

If it is assumed, for the time being, that the coefficients
of (2.2) are well defined then it is manifest that each element int he

sequence (2.l1) is ultimately a function of the initial element x,;‘“"

This function however is as yet undefined (arbitrary). To show the ex-
. £
plicit dependence of the iterative solution X‘&,for any o 70 on the

arbitrary function XD‘A,the recursive formula (”.2) is reduced to the

- i A=t _
non-recursive form ‘gd'wi | Ze""—
4 “ <« - A A o %% — -
- (2.5) X; :(ﬂo )XD '+("'3:=2'—}_i"ee( 3 éd_ — % — LQL_.I,I‘,
: F-'I,. A &~

and where it will be shown that

(2:6) Merrn 6:"‘:(, for any i, h.

A2
The formula (2.5) may be verified by mathematical induction. ,
The iterative elements x“f‘(tjin the sequence (2.l) are now
expressed by (2.5) as a linear function of the initial arbitrary element
X57(#) of the sequence. The expression of the solution as a recursive

form (2.2) has been reduced to an irreducible linear form (2.5)



The linear statement (2.5) unfplds two problems whose
resolution is necessary for a complete formal iterative representation
of the actual solution
(2.7) X<t (£) = f‘fi; x5* ()
of the n-body problem. The first problem is to choose some appropriate
scheme (natural to the context),of the many possible modes, for the
selection of some one class of functions with regular properties over a
region to replace the arbitrary function. This class should be an
ordered set such that any function in this chosen sequence is a closer
approximation to the actual solution X;Ahythan any of its predecessors.
Secondly, it will have to be shown that the %&y&} é:‘f‘>- R third prob-
lem, contingent on the second, is involved, namely to show that

e‘i‘- for a finite o is a measure of the error of the iterative

<4 relative to the actual solutiodn x<* These three

solution X
problems will be resolved in the succeeding part of the paper.

The Recursive Formulation of the Coefficients of the Linear Form: The

first necessary step in an explicit statement of (2.5), 1s to give de-
fined expression to the coefficients A and C. Two modes of expression
are open, namely a recursive'[u] and a non-recursive one. We deal with

the former firste.

The substitution of (1.12-b) in the definition (2.3) leads to

the expression

(3.1) H: = ZZHJG;L?&

7 fro 3 b a fixed integer>o.

By means of (2.3) (1. 12 b) and (1. 10) we get

oA b ,(, atbl -, y
C ZH}[Z 4,7»/{»& Zg? /"2:;6.* 74@% '5;17 7 )

which expression turns into

ey .
(3.2) (4= ZH}%“ o7 gy



Te
We note that the serial coefficients § and¢ must initially be formulat-
ed in recursive form in order to gain defined statements for A and C

The serial coefficients 6’( and § are given in reference [5]

in the following form:

~f 64 it @F% pude o
(3.3) G7= 2 EZO) ; "’7/ =57 =80T, A=ona, - Ly

(3.) G, < - Ky i(zﬁw) (’" = 46)7, Azlyz---

(3.5) glz*' -(%%&)”’ZZHJ w’?y‘ﬂ) A70

Slight consideration of the formulae (3.3),---, (3.5) will
show that by cyclical use of these expressions the walues of 624;(z;f
and?f?4 may be attained for any value of 4 and that each of these
coefficients are ultimately dependent on the prior knowledge of §be

<4
and f, By means of the identities

ooy S0 ety , et = 4o,

)

the 67 boundary conditions for the n-body problem are specified. So
that the eoefficients are ultimately expressed as functions of the
boundary conditions. _

- g+ O+ . .

The coefficients 4 and Cg of the linear golution (2.5)
thus become, in view of (3.3),---, (3.6), well defined functions for
any o and a given b~>© . The three recursive formulae may then be
used either in the actual solution X“%(#) of (1.1) through the serial

representation (1.10),or more significantly in the iterative solution

Xi‘]t) given by (2.5).

The Non-Recursive formulation of the Coefficients of the Linear Form:

The definitidn of the coefficients A and C of the linear iterative
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solution (2.5) were given as functions of the three serial coefficients
e,ﬁ; k3 in the three recursive formulae (3.3),---, (3.5). A more
potent formulation is now given for these three quantities in terms of

the single coefficient § where § itself is a function of theé?initial

conditions.

The second type of formulation as an irreducible recursive
expression, is given in ref [5] . The basic statement with its defini-

tions 1is wrltten as follows

(h-'l) A""- EZZ(& ")’ 4/14\.

2B L PN T (kb gl Aeonae

o 44 ) pe3 P, i ?
(u.2>|fez}lt— ”{V(R *)x- -ﬂ— ?.Z(uu "’ "5]

(. 3) G = GAbyo) = 2 Top F(esbs¢, ) F B, @, %1); H= H@k}?,&) f(r(d +|I”*“)?*”

(Ly)y a= o(f -,@-P-% ob:'P c:—z/w:;( —-7-'_-5 A=-2P"‘U\o} R =Je43_5-',{=-1k+k*0\°7+2
P p

(l1.5) %'ﬁ’ 0(}?7-/’3 D( =p- ZO‘,}? 5 ZOEO) p=1,2y=""3 §= 2~ =5 P(P)B
Pre) = z( )"*’P[p-,_(s'e +e) (partition function),

[-’_] /Zdrfesx'/fnteye-r ﬁoTepceeJ/fnc;— (:f‘.Q)’)_oTl aa;ordm;,
as ,64— or ,é—

To evaluate the cocfficient @;3 of the series (1.11lb)

use is made of the fozmula (3.8) of reference [5] This is gi%en as

(l1.6) S',e = (RH)™H ZD(«M)K A,oa,?)ﬁ(ra )*&%

ahseg ARt ]
S - d f‘k 4 RJ—‘} Z—% ] »/?—011521'—'5 .’n’l.:--—l—

(1) D, F) = am (omet)--~(m-F), = k-0

AI
#, oa
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and where the Pemalnlng symbols in (Le6) are deflned by (L2 )y==-(Le5).
“
Since fﬁ t* R41 z
it follows that
<t ;4
(Satdeo _ ¢4 (Rst)sz0 _ @2
= 0 5 =
yE

,5_,\
It further follows, from (L.5), that

(lte9)

(}4_.10) Gh = /kl =X °ZD‘<(+'€5.7) ’,&:Ol,l’--—jfry‘:_%'
=/
The expression for (JL; in view of (3.3), is given as
SHA ) ezh crh_ gttt ool
(4o11) Z_:,ZO) 777 5 Y= g7

The first set of recursive equations (3.3), (3.4), (3.5)
for the serial coefficients €,(,§ are in the form €= £(8),6= 6(6¢),
§= S(6;€)., These have now been transformed into irreducible recursive
expressions in terms of § alone, namely €= e(i)J G:G(f), ft §(§)
in the equations (lj.11), (L.10) and (L.1). These in turn are readily

seen to be functions of the &% boundary conditions,

<t * e A
()-]»012) [.x-"-“»[f-)]}t:a: fo 5 [x 4(jjjt=0 = “?l ),(':./)l/—--j,nl %_-_-,)1/3‘

- A L L
The coefficients H,L and C[

,as given by (3.1) and (3.2),
again become more explicitly formulated by the alternative process
given by the irreducible recursive statements (4.1), (4L.9), (4L.10). We
thus have at our disposal two processes in the formulation of the

coefficients A and C of the linear iterative formula (2.5).
II THs ANALY!ICAL PHASE

The formal phase of the iterative process in the solution
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of the n-body problem is embodied in the iterative formula (2.5) which
has the properties that it is linear, non-recursive and irreducible.
Associated with this expression are the two modes of determining the
coefficients of (2.5).

The basic problem still remains and that is to show the

analytical validity of the iterative expression, namely that

(5.0) Lo xt(4) = x*4l4), # € R

od > oo

where, of course, xiﬂ(fj is the actual solution of the system (1.1)
and X:%, A= 2, -~ - is an element in t he sequence (X;j)(,“ﬁ Xff"——-)
of solutions of the iterative system (1.9) and where R is a complex
region on which the right member of (l.1l) is analytic for any i, j

and h.

In conjunction with this basic problem are the secondary
ones: to determine the region R of convergence of the power series
expressing the actual solution; to find an appropriate expression for
the arbitrary function XjA(*l in the iterative sequence of solutions
\X;%;Xf“f-——— ) and to find some measure for the rapidity of con-

vergence of the sequence relative to the actual solution.

The Radius of Convergence for the Actual Solution: Since the right

member of (1.1) is analytic in the neighborhood of the origin and this
combined with the specifications of the boundary conditions allows us

to represent the solution by the power series,

0 A
(5.1) x<4(#) = %?—k 24t

converging int he neighborhood of the origin. Our first concern then
is to specify the region R of convergence int he complex plane of the

representation (5.1). Two regions are specified in this section, one
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a minimal and the other a maximal region with their corresponding
radii.

(1) The former is given in reference {1] . It is there
specified that the series (5.1) converges for all real value of t in

the interval given by

A
(5.2), (< —m

where the following definitions and conditions are fulfilled by a and c:

(5.2), a= 4 /;::'(/WCZL;, | £ AN, 12 e, L) 0<0<]
(5.2), A= mat | X

(5.2, ¢ = et deH)

(5.2), ¢ = 223((72)3

(5.2)¢ Jd5= rj:/-, x‘*(i)]f:o-:—a,

(2) The maximum finite region of convergence of the series

(5.1) is discussed in reference [5] . We briefly recapitulate the

essential items.

.Since it has been assumed that the motion of the system of
n-bodies is to be regular, namely that no collisions or other real
discontinuities exist in the motion for all finite time, it follows that
any divergence of the series (%.1) is a consequence of only complex
singularities that exist in a finite reglon of the complex plane. The
real axis must be void of any singularities,.

In order to generate a time series which represents the

solution for all values of the real finite time and so corresponds to
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the assumed regular (analytic) motion of the system, the following

Poincare transformati on[‘ﬂ*ff 4{215"Jis used,

_2Hh 1+ 7T
(5.3) A== /LWI—T

where t and 77 are two complex variables and where -A specifies the
distance that the nearest singularity of the solution is from the real
axis of the t plane. It is readily observed that the mapping (5.3)
transforms "the interior of the circle |71=/ on the 7 plane into a
band which extends to a distance £ on either side of the real axis
in the t plane,"[7,P%23] ., 1t follows that if a series in 7~ con-
verges for all 7 in the region |7]¢] , the transformed series will

converge for all t on the real interval -oco< £<+ co

The series (5.1) as given in ref. [ 5] takes the form
' SSEA W (At )eee “)ece 7=
(5.) Xx*“4(4) = > %27 - x2M0) +x; (0)+ZZ e
r=o

where '7,;'74(}) is defined by equation (2.5) of the reference.

Since it is known, as stated, that the solution is analytic in the
neighborhood of Z= ¢© , the series (5.4) converges in that neighbor-
hood. So that the Cauchy limit ratio is valid. Thus with the use of

the transformation (5.3) we generate the valid inequality,

' Hy '1;4%4 ' 2 2 \TH3 +7 743
2 G ) (i)™ |
% Z Hi’rﬂ;&& ((7_ Z )*“‘(V&u HT)'H’-
(r+2)! o T =7

With the use of formula (1.10) ref. [5] namely '7"”{ - 7"7(, 7"7'/‘
FA

) 9
the above expression is reduced to the form

M )l,,fb;l‘-‘t: 2,& lzéyu I+‘T|<| ;

P oo 'f‘”
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~F Ao -
Wwhere !"1, It:a i1s the least value of the set \ "‘l,”‘"(at:o for }‘:J

In reference [5] it is shown that__*‘“l
| + T i P B kil PTP)
Tl < —~ <9 = A
‘ l ‘ f T, » & Tr,é':r;— (‘f'-+3)

The quantity -qu- =0 provided | ‘1,"5'&1;:0’40 and where .. > O

and finite., The expression

‘ F - £ L-A 1 43_4»
(5.5) 4T pme = [AST R Fy ST LZTH L F O

O,

implies that no movable singularities, given by PV;°5*1;¢=02
are allowable in the regular motion of the s ystem.

The discussion may thus be summarized by the
Theorem: The pawer series (5.4) represents the actual solution X<*%(#)
over the time interval-® < £<+<e provided that +4Aemovable singu-
larities are accounted for, namely that condition (5.5) is satisfied

at the initial state (130) of the motion. The movable singularities

[5] are given by the expressions

[ ‘3"_"_4, “¥
(5.6) (Rq);w:o ot \:zb aiR "L‘\ = =z
R L X% l4= 3

The Limit of the Sequence of Iterative Solutions: Once the existence

of the actual solution and its region of validity is formulated, the
basic problem presents itself, namely what relation does the sequence

of iterative solutions bear to the actual solution. Is the limit
relation given by (6.0) analytically valid? The problem has been
resolved in a topological mode in references [6] and [3] , and by classi-
cal means,and in somewhat different context but identical structure, in

reference [ 1] .

(1) In the first two references it is shown that the sequence

of iterative solutions of any system of first order differential equa-
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tions with analytical properties may be subsumed as elements of a com- i
plete metric space which permits a contradiction mapping of the sace
into itself. The space under this transformation has a unique invariant
(satisfying an initial point) which is the limit of a sequence of ele-
ments of the space. This invariant is the unique solution of the system
of differential equations and the sequence is an iterative one,gener-
ated by the contraction mapping in the form of a system of systems of
integral equations.
All the ingredients exist on changing the s ystem of 3
equations (l.1l) of the second order to a system of ¢ m equations of the
first order with the s ame é2 initial boundary conditions and analytic
properties. We are thus able to transcribe, with slight formal
changes, the extended existence theorem, given in reference [6] s to
the form,
Theorem: The analytic function X“f}J which is the 1limit of the
sequence(XD, & S XA —--) of iterative solutions X%&

of a system of differential equations

4’.

b A
ﬁi*:chA(tJXLa‘) f X‘? '/"J"// ey, A= 113),(,11

is also the solution ,x‘4(ﬂq (if x<%(+#/ exists) of the

system of equations

dx‘cd _ f"{ /7(_ X‘?“) {X.(,;{__ X;’(- )("A}
0?1‘

satisfying the same boundary conditions, provided the initial arbitrary

function X, %

of the sequence is defined to be analytic on the same
region as,K“(%} and satisfies the same boundary conditions.

If then the expression (2. 5) is transformed into the form

- .4‘&.
vy S A e g Z /o e 2%
(6.1) X“*(t)= A’”‘X f;’.”:o AL Yoo T 7% Ay Lo o0
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then the theorem further tells us that the limits of the coefficierts
exist and are bounded. This is so, since it has been shown that the
solution XAIY7J of (6.1) is analytic over a defined region. It will
be verified by an independent classical consideration, that such is
the case., We first give an expression for the arbitrary function.

(2) A glance at the statement (6é.l) makes it manifest
that the limit function X*“/4) remains undefined to the extent in which
the arbitrary function X;”W?/ is unspecified. Of the many possible
ways of definition, that mode is considered which is closely agssociated
with the specification of the coefficients.

Thus the partial sum (1.10),

VN
— L
(6.2) X:A =:/;§; Z* 5 b70) fixed integer,

of the series (1.10) is used, If «=0 , define the arbitrary func-

tion by the expression

b .
- — .LIL
(623) Kt el = X = 2

<o

It is manifest that the larger the value assigned to }p the closer will
the initial function x;‘ApQ(and therefore every element in t he iterative
sequence) be to the actual solution x<4(#) . The now defined function,

x;‘*—ﬁf}, may readily be shown to fulfill the two conditions demanded
by the theorem. Since it is a polynomial, it is analytic in any region
for which the solution is analytic, and for %£=0 the boundary conditions
are satisfied.

(3) The independent classical proof of the validity of the

form, given by (6.1),1is developed in reference [M, De 577] « The
results are summarized in the following

L 4 . .
Theorem: The limit of the sequence (Xf}g X K - ) is given by the
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equality

Lo XE®R] = xotez)

o =0
for any i, h and t in a defined region R; X<*%(#/ is the regular
solution on R of the system of differential (1.1);,X:46H (d=t,2, —--)
is the iterative solution given by formula (2.2).

In the proof of this version of the theorem [L]| it is shown

that the following limits exist and have the following values:
o=l

[ N ,‘.
(6.) Lero é‘{”(ﬂ""'/ﬁ/ﬂl AL(t)#o MZC4 is bounded for
A > oo d 4 ol W o
any i, h and all t in the defined region R. If to these facts we add
the statement that the initial function X,*4(#) as given by (6.3), is
defined analytic on R , we are in a position to formulate two state-

ments:

Theorem: The expression (6 1) may be written in the form

A,
< . CIA»L
(6.5) X “'(%) /e(/VV“w D _‘_ /&/yy" z:o oh= -
‘* od > o HI
“ AZL
where H,L(f)¢0 and Zd ) is bounded for any I, h,

and a1l £ €R
The second statement is contingent on the radius of con-
vergence of the solution series. If the minimal radius of convergence

is considered and as given by (5.2)o , then we may formulate the

following

Theorem: The terms in the right member of (6.5) are analytic on the
circular region R of radiust\‘“Z%:;) where the guantities a and ¢
are given by (5.2), , --- (5.2)

If the maximal radius is given,then we may write the following

Theorem: The terms in the right member of (6.5) are analytic on the

circular region R of radiust"'co provided that

T S (A5t ST Lo
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The Measure of Convergence of the Iterative Solution: The iterative and

approximate sequences

H A -
(7.1) (a) (X;‘”, )( Xf,"‘ bJ(XG 9/V(3f;JX;fa.a --)

have different rates of convergence to the limit solution 5(04ﬂt)
of the system of differential equations (1.1). Our object in this

section is to find a measure of the relative rate.,

It was shown in ref. [6] that the above sequences, successive
aporoximate and partial sum solutions of systems (1.9) and (1.8) respect-
ively, are imbedded in a complete metric space under a contraction
mapping of the space into itself. This space has an invariant under
the mappring which is the soluticulxil(f7 of the original system
(1,1), with the property that

(7.2) 'e‘/”‘“’ X;’L(H {f_\’fg‘; X;'.L(f}'—‘)("‘()"/’mﬂfixed integer; &R

o >

The metric, @ , of the space has by definition [3] , the

following properties:

(7.3) (’(x)»tl):ojx-;c“ C(x,9)= €y, x) 56(",}) = 6()(;(}')“‘?(‘733),'1"/[ J

where x, y, z are any elements of the space. Finally in ref.'[él
we defined the distance (metric) of the element (or curve) 7u(f)
to the curve (or element)’ﬂuﬂf) of the space by the statement that
(T) - Ol ) 2 €y = mat]9, (4)- 1., (8]
In the above reference it was given that

)
(7.1) G aer S MA G qire 5o 4'../,2. —-- s MA<l
for any two elements ZfAYf) and ’7 (}lln the sequence (7.1l-a)

and where M 1s the largest in the set of upper bounds of the functions
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4 i
7§t g , and A = Z'(%:T) as given by (5.2),
Expression (7.5) states that the maximum of the absolute difference
between any two curves 734 and '711&. in the sequence (7.1l-a)

is less than the maximum of the absolute difference of the correspond-
ing immediate predecessors.

The difference of the error function € for any two curves
in the sequence (7.l-a) may be formulated, by the following considera-

tions. By definition (7.4) and (2.5),

- A (.,L 44
Cyanr = qrog Xk - xg 4 =g Qe - D e |ei™ e
where 4
C’
g Dyte HEXT Fare
Hx P
Since
A'& LA 4.,4. 2 oL
z‘4, l(f*”‘ D« ).;(6 “') fz/rmaﬂi‘a:v'[)* ‘4'/,”1%\&* € v

it follows that

(7.6) ot eh ettt
¢, 4 é o+T

A
- om < l
= &, kY t,c,a‘zf‘DJ“"y Dok

The maximum of the absolute difference of the errors of any two curves
of the iterative sequence relative to the solution 47“(f} is given in
terms of the elements of the sequence as determined by the linear
formula (2.5).

To measure the relative rate of convergence of the two se-
quences, relations must be established between the elements in the two
sequences. To do so we start with the basic definition of contraction

mapping in a complete metric space, namely that em’n£°‘ﬁg-wu44 m-l, el y k<l

Specifically, for the elements,X),, x;:ﬁ, of the sequence
(7.1-b), we write
- i ] >0  $=91l2---~
(7.7) Cb‘; yra < (‘}_U gra=t y yz B*S 3 a fixed integer 5 s 42,
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The convention is established that a subscript @ or y will imply
reference to the curves of the second sequence (7.1l-b)

Expression (7.7) is given in terms of the elements as

Moy

2'44\

— A -

ﬂ-‘-s‘-“_ (:54'5 M{ZI\ Xa*—j-f‘a'l - Xa*s_/ \

In view of expression (6 2), we wWrite

bebani B+~

rer| 2 6% Z‘ £t e ot "z’i;;w R

120t pme
or ot Sha Bestat

e\ E e s
This leads to the statement
(7.8) Cy, yra ‘Z’j”j[ f@j’vt“’(
where i
(7.6yt @l C, yia = (;rlu:f\ z;g/«z» /fl (4) <°_,) pie) :ﬂ?/jszf(‘
/ A=

Expression (7.7) or (7.8) specifies that the distance (or maximal
difference) between any two functions,in the partial sum sequence (7.1-b),
is less than the distance of the two corresponding immediate predecess-
ors.

It is specified that the measurement of the metric is %o

start from the initial element common to both sequences, namely

" 44
(7.9) A(’U = (+) s @ a fixed integer >°

A' A
as defined by (6.3). Consider the functions "1:4, Yzii and "1(;“, 7{3:/

of the two sequences. Then, in view of the triangular rule (7.3), for
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the metric, the connection between the elements of the two sequences

are given by the inequalities

o)
(7.10) Cosattr £ Cojous + Cog gur
(7011) ?0j9+5+‘ = (30,&4‘7 -+ P&.‘.f) G..’._g*‘
. . A A
Expression (7.10) relates the metrics between the elementslyo ,’Z,f
. - o4 A = — .
of the first sequence and the elements 7';; :7’;’, q;ﬁ and 416‘;:' 3 41:::“_

of the second and first sequences. A similar situation holds for (7.11).
The inequality (7.10) leads to

(7.12) 6;4.5) d+V = Po, d4T = Po,@+5

provided the condition

(7.12)1 €0, d4+v = Co, p+s

is satisfied. Likewise (7.11) gives

(7.13) Powv, p4sH Z (Do, e+S+1 — eo;*”"
provided

]
(7:13) PO;G'*S‘“ zZ PO’°L+7,-

Conditions (7.12)’ and (7.13Y are put into the form
(7.1l) Po, a+s = PD; et < %,(34.54.., .
It is significant to note that if the condition (7.1l1) holds for the

—

three elements ﬂa+5"7L+T) 7@+s+' ’

then if a mixed sequence of the
two sets of elements are formed,the order of the three elements will

be as given above, Furthermore the two elements ;a*s, q%+5“

of the second sequence (7.l-b) will have the shortest distance to ‘&+r

on either side, for any two elements of (7.1-b). If then we assume that
the inequality relations (7.1L) is fulfilled, we generate the order
11(“5 9 ,yowo") “Totstl

This quantity § must simultaneously satisfy the inequality

(7.12) and (7.13). Furthermore for ﬁgn and 4 ' of the sequence to be
B+s+
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nearest to ﬁ$*+ on either side, it must also fulfill the conditions
(7.11)s The quantity s thus indicates the number of terms in the in-
terval of the second sequence from 76::7; to 7h3+$ required to cover

the interval from 4, to Tisy ©OF the iterative sequence, In this

sense the coverage given by 3 , is a measure of the rate of convergence

of the iterative relative to the partial sum sequence.
'The explicit! statements of (7.12), (7.13) and (7.1ll) are
given by means of the definition of the metric (7.L) respectively as

follows:

R A LYY ol — «4
(7.15) /:fxfzalxw—xmlz mad | K- K| - grop | Xs = X

PR - th A L A PPN
(7.16) oy | Koy = Rpen | = mag|Xo- X5 | - omag | Xo - X
P RA E AT

4t

ch — e b oA " <t LA
(7.17) quzgxa- Xms‘ < Mafﬁlxooxwfl < mat| X - X(,+5+:\
2,44 £,¢,4 A AL
The barred elements X are given by the series (6.li) and the unbarred
elements X by the linear form (2.5)
A useful inequality may be derived from expressions (7.12)

and (7.13). By adding these statements we get

PG+,,¢+r + Cur, o541 T Cospist = 6, a4

since  €puig anr Z Coppardtt = €y e, it follows that

s, a4s41 = Co,y (s
(7.18) Cavs, upr = —wpdst > Lo :

Expression (7.18) gives a measure of the mixed metric in terms of con-

secutive curves of the same seguence (7.1-b)

III THE NUMERICAL PROCESS AND SUMMARY

This part deals with a list of the formilae for numerical
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processes, brief specification of these processes and which at the same
time gives a summary of pertinent results. The numbers attached to the

formulae correspond to those in the body of the paper.

The formal iterative solution of the system of equations
s e A < Y 4_4\ - G ‘o, ‘ .
(101) X“ = % H&'S’Afx 7 3 HJ— C'md’-j 4,}:»’,1,4--/ m)-,&,:l,},.?} ,4-_;&;

is given by two forus,

. t 4 .
A _ Hol-' L Cx S ot
(2.2) XZ "““‘H“L Xy * Ht - L4 , A=h--(recursive Lorm)
d-
1 <4
Af o 2C
(2.7) xg%= 2o 22t g% 4z~ - (irreducible linear form)
F]‘* AZ
(2.6) Aere 6 for any A; Lo
A > o

The coefficients A and C may be computed by either one of

two sets of formulaeo The first set is given as follows:

(3.1) %ZHJGA}/{# b a tixed integer >0
A=0
ad_ Py 4 2(A+b)
(3.2) C(; = ZH}i*b at-tb’{’
—;..' P 4-.- < £ 4-4 .
(330 €37 = #,é"ﬂ /N 770‘*/” ?’ L Aoy Lt
l.r‘___ ¥ s _ -1 _ )
(3.11) 6&}—- K, é(ZWw)(/' ?f.} |<k_,_(z»’e’€,,) 5 A=ha-
<A < ,(
(3.5) T (/&"4’ Z ZHJG_ "v s Ao

Uro v-

1a)ER;? = ZG“’M "s"‘f fv“/’f (@ X Zf’?",—t*" 7§ 8¢

;I < ya 4. ’( k L ‘A 4 "4
(1.11) (a) R¥= ;9 ’/c"’()%“’ Z« 144 () X Z ST/ AE e
4 .
(3.6) 5’04 = [X‘k(’*ﬂfzop 5 ; [)’(-"“(})J $=0 Initial conditions

By cyclical use of the recursive expressions (3.3),---(3.5)
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the values of (J;?, 6‘,:# and f;" may be computed for any R

Each of these coefficients are then ultimately expressed in terms of
the initial conditions given by (3.6)

The second set of expressions in the numerical determination
of A and C are given in irreducible recursive forms. These are listed
in the text from statements (L.l) to (L.11). A brief description is in
order. The coefficients § in (3.2) are given by equations (L.1)
and the associated ones (l1.2),---(4.5). For the coefficients § the expressions
(lLo6) to (l.11) are used., These quantities reduce to functions of
the initial conditions given by (L.12). In reference (5] a brief
specification is given of a process in the numerical determination of
the §'S.

In what follows we are guided by the fact that
(5.6) A K& = Memee RE% = g% (#) , £ €R

AP o0 o & T

where X"“(f} , the solution of system (1.1) is given by the series

[~{]
_ A

(1.10) x*(t)= Z§5244,

A-o

<4 . .
where X , the partial sum solution of
x4 cf v ajh -
(1.8) Xy T Z HSTXIT, wmnag oo
¢
has the form
_ ¢ B y
(lolO)‘ X, = Z§4 ATy d=1h2,--75 @ a fixed integer >0
$zo
*4‘ = ‘d - o

and described by the sequence (7.1l-a) (X& . X;;+H sz ,-——)

and finally where X:"‘ , the iterative solution of the system
- .(_.»&_ <} <jh
o) XIT= ZHSIXTT,

is given by the recursive expression (Z2.2) or non-recursive linear

A A A
form (2,5) and described by the sequence (XZ; ) XZ“, Xg_n.)“‘)



- ' = - /“ .
(7.1-b) (x‘p/‘, Kt Xoa = == ). We defined the initial functions
of the two seaquences by (6.3), namely

G
—.‘ — 4 - 3
(6.3) XD"A (*)': )((5 €d, —;ffq /{*, 3 a fixed integer >o
=0
The radius of convergence of the series representation

(1.10) of the actual solution X<%(# of (1.1) is given in two forms,

namely as minimal and maximal values. The former is given as

(5.2), 12l ¢ —Z—s

(5.2), & =i9417:5;,"—a@?‘ s ledfem , wtf, 0<6<l

(5.2), a',é,;' = m%’xﬁ;f‘x(zp y X(;ﬁ, X(';f initial conditions
(5.2) 4 c= nm’a;/(cé@ d*), (A3

(5.2), (5.2)5 cet= ;2; a‘gf('?i)z 5 4% = fzf%l)((‘of‘hw

The maximal range for the actual solution (1.,10) takes the form

ﬁ¢!< oo P'rouidcd (Rz.f)-: o X»LJ{. d.R*? 75 2
-° <3 A KrAFh 3
The expressions o R dx 2=0
) <34 L RAF |
(5.6) (R*#) !,X - -z
Vit )1’2" ? g Rt aeij(;ﬂ -3
T+ #zo

determine the movable singularities of the actual solution (1.10).

It is significant to know the rate of convergence of the
iterative sequence (7.1-a) relative to the partial sum sequence
(7.1-b). The gquantity S, in the formulae that follows, measures this
rate., It specifies the number of elements in (7.1-b) required to
cover the interval between any two elements of the iterative sequence.

The quantity S must satisfy tne following three inequalities:

2
(701\—-) P(S‘P\S}D("'T Z 6)9(4'*”?0,8*-5)0(:/)2)3J——_) 1’:0,/1]./-__
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(7.13) Coir, aest1 Z Gy posn = Coyter

(701)_L) 601(9,45 = eo,dc‘Y = PL‘) BtS+i

In view of the definition of the metric for a complete

metric space,

(7al) e))w = @(‘{u, 74,0) = /’;"1‘{‘/0("‘]“/“1(’*1! 5

€he above inequalities are written as

— A
(7.15) 7;@4 | X s~ Xy | = = oy Xs=x5h |- f;lf% XME
— A P PR PN
(7016) /Y"‘v@/ﬂ! )(ou.y“- XB*‘“‘ M‘&Xc - XB.;.S”%“’ M!«a/)ﬁﬁ)(o"x&.f.y’h
*t,{ 7‘/‘;4 Ayt
) <« b — A YA b — A
(7.17) /WL07£| Xe~ X[345I £ Mok i)(o “Xoary | = /”"“7{5)(’0 ﬂ+5+/\
;(',4-,( j/"l"

The most likely mode in the determination of the guantity S is by a
numeric successive a proximation process.

Three miscellaneous expressions are given which may prove
to be useful., The difference in the error functions over the range of

elements from V‘{{#j to *7‘*(0 of the iterative sequence, is given by
AT

(7.6) mw%i@(’” eoww\z ydsr T O [eheln

#

/ﬁ“(\
. At Hb ., ot % "“3
- As "’ A<

A simple connection between any two elements of the partial sum sequence

is given by

(7.8) PY,Y+AL <

The following inequality gives . ssure of a mixed metric in terms of
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consecutive curves (elements) of the partial sum sequence:

&, ars+i - C

A , @+s+1 = Co, B+s

(7.18)  Cpis,atr 2 >
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